57,079 research outputs found

    N-port rectangular-shaped distributed RC NETWORKS

    Get PDF
    Dielectric material between resistive thin film and pure conductor considered as n-port distributed RC networ

    Synthesis of active distributed RC networks

    Get PDF
    Open-circuit transfer function of two-port network expressed as rational function with real coefficient

    A Statistical Analysis of the Influence of Deep Convection on Water Vapor Variability in the Tropical Upper Troposphere

    Get PDF
    The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong moistening at low RH and offsets drying due to subsidence across a wide range of RH. Strong day-to-day moistening and drying takes place most frequently in relatively dry transition zones, where between 0.01% and 0.1% of Tropical Rainfall Measuring Mission Precipitation Radar observations indicate active convection. Many of these strong moistening events in the tropics can be directly attributed to detrainment from recent tropical convection, while others in the subtropics appear to be related to stratosphere-troposphere exchange. The temporal and spatial limits of the convective source are estimated to be about 36-48 h and 600-1500 km, respectively, consistent with the lifetimes of detrainment cirrus clouds. Larger amounts of detrained ice are associated with enhanced upper tropospheric moistening in both absolute and relative terms. In particular, an increase in ice water content of approximately 400% corresponds to a 10-90% increase in the likelihood of moistening and a 30-50% increase in the magnitude of moistening.NASA Global Energy and Water Cycle programNASA Earth System Science researchTerraACRIMSAT NNG04GK90GGeological Science

    Spherical to deformed shape transition in the nucleon-pair shell model

    Full text link
    A study of the shape transition from spherical to axially deformed nuclei in the even Ce isotopes using the nucleon-pair approximation of the shell model is reported. As long as the structure of the dominant collective pairs is determined using a microscopic framework appropriate to deformed nuclei, the model is able to produce a shape transition. However, the resulting transition is too rapid, with nuclei that should be transitional being fairly well deformed, perhaps reflecting the need to maintain several pairs with each angular momentum.Comment: 7 pages, 5 figure

    Geographic and Seasonal Distributions of CO Transport Pathways and Their Roles in Determining CO Centers in the Upper Troposphere

    Get PDF
    Past studies have identified a variety of pathways by which carbon monoxide (CO) may be transported from the surface to the tropical upper troposphere (UT); however, the relative roles that these transport pathways play in determining the distribution and seasonality of CO in the tropical UT remain unclear. We have developed a method to automate the identification of two pathways ('local convection' and 'advection within the lower troposphere (LT) followed by convective vertical transport') involved in CO transport from the surface to the UT. This method is based on the joint application of instantaneous along-track, co-located, A-Train satellite measurements. Using this method, we find that the locations and seasonality of the UT CO maxima in the tropics were strongly correlated with the frequency of local convective transport during 2007. We also find that the 'local convection' pathway (convective transport that occurred within a fire region) typically transported significantly more CO to the UT than the 'LT advection -> convection' pathway (advection of CO within the LT from a fire region to a convective region prior to convective transport). To leading order, the seasonality of CO concentrations in the tropical UT reflected the seasonality of the 'local convection' transport pathway during 2007. The UT CO maxima occurred over Central Africa during boreal spring and over South America during austral spring. Occurrence of the 'local convection' transport pathway in these two regions also peaked during these seasons. During boreal winter and summer, surface CO emission and convection were located in opposite hemispheres, which limited the effectiveness of transport to the UT. During these seasons, CO transport from the surface to the UT typically occurred via the 'LT advection -> convection' pathway.NASA Aura Science Team NNX09AD85GJackson School of Geosciences at the University of Texas at AustinNASA Jet Propulsion Laboratory at the California Institute of TechnologyGeological Science

    The first operation and results of the Chung-Li VHF radar

    Get PDF
    The Chung-Li Very High Frequency (VHF) radar is used in the dual-mode operations, applying Doppler beam-swinging as well as the spaced-antenna-drift method. The design of the VHF radar is examined. Results of performance tests are discussed

    On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere

    Get PDF
    The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted

    Irreducible MultiQutrit Correlations in Greenberger-Horne-Zeilinger Type States

    Full text link
    Following the idea of the continuity approach in [D. L. Zhou, Phys. Rev. Lett. 101, 180505 (2008)], we obtain the degrees of irreducible multi-party correlations in two families of nn-qutrit Greenberger-Horne-Zeilinger type states. For the pure states in one of the families, the irreducible 2-party, nn-party and (nm)(n-m)-party (0<m<n20< m < n-2) correlations are nonzero, which is different from the nn-qubit case. We also derive the correlation distributions in the nn-qutrit maximal slice state, which can be uniquely determined by its (n1)(n-1)-qutrit reduced density matrices among pure states. It is proved that there is no irreducible nn-qutrit correlation in the maximal slice state. This enlightens us to give a discussion about how to characterize the pure states with irreducible nn-party correlation in arbitrarily high-dimensional systems by the way of the continuity approach.Comment: 5p, no fi
    corecore